Los datos y la fe - LUCAMi segunda colaboración para el blog corporativo de LUCA, la unidad de Big Data e Inteligencia Artificial de Telefonica (aquí la primera) se titula “Los datos y la fe” (pdf), e intenta ahondar en el concepto de revolución frente a evolución que supone el machine learning y la idea de tratar a una máquina que se encuentra introducida en nuestra rutina diaria desde hace décadas, el ordenador, no tanto como una simple automatización de tareas, sino como algo capaz de captar datos y derivar sus propias reglas de funcionamiento a partir de ellos. 

Lograr extraer una ventaja competitiva de una revolución como el machine learning, con efectos comparables a lo que en su momento supuso el desarrollo y adopción masiva de internet, requiere por un lado directivos con el perfil adecuado convencidos del papel de la ciencia en el management de las compañías – un aspecto en el que incidí en mi primer artículo de la serie – y, por otro, de un convencimiento pleno de la necesidad de dotar a esas compañías de una cultura de datos que permita reorientar la totalidad de los productos y servicios de la compañía hacia ellos, como anteriormente lo hicimos con respecto a internet. Las mismas compañías que en los años ’90 creían que internet no supondría un cambio en su forma de hacer las cosas están ahora, un par de décadas después, completamente orientadas a la red, o si no llevaron a cabo ese cambio de mentalidad, muy probablemente hayan desaparecido. Ahora, las compañías deben tomar la decisión de formar a la totalidad de su personal en una tecnología que va a suponer un cambio fortísimo en la manera de entender el mundo en las próximas décadas, la que marcará la próxima gran discontinuidad entre los que la entienden y la saben aplicar y los que no.

Estamos aún, obviamente, en fases experimentales. Aún veremos en muchas ocasiones algoritmos capaces de aprender de los datos de maneras erróneas, de heredar sesgos o de crearlos en función de patrones que no sabíamos que estaban ahí. Si históricamente hemos incorporado menos mujeres que hombres a nuestras compañías, es posible que un algoritmo diseñado para optimizar procesos de reclutamiento alimentado con nuestro histórico de datos tienda, sin la supervisión adecuada, a discriminar a las mujeres en esos procesos, con todo lo que ello podría conllevar de pérdida de oportunidades para la atracción de talento. La adopción tecnológica tiene este comportamiento que requiere de procesos de ensayo y error, del desarrollo de una cultura que posibilite entender los mecanismos que conforman el aprendizaje de una máquina, la generación de algoritmos a partir de los datos, mediante procesos relativamente toscos al principio, pero que pueden evolucionar hasta mostrar patrones intrínsecamente superiores a los exhibidos por los tomadores de decisiones humanos.

No hablamos simplemente de hacer o plantear Machine Learning: hablamos de automatizarlo, de convertirlo en una parte integrante de nuestros procesos empresariales. Entender ese tipo de procesos no es simplemente el fruto de un proceso de reflexión o de aprendizaje individual: requiere la fe necesaria para trasformar las compañías y sus procesos de negocio – que en muchas ocasiones no mostraban signos especialmente preocupantes de ningún tipo de problema – para adaptarlos a las posibilidades que ofrece el machine learning. Las resistencias serán importantes, y van a requerir no solo argumentos, sino la capacidad de rodearse de personas que entiendan ese cambio, que crean en él, y que estén dispuestos a invertir en el proselitismo necesario para convencer a otros. Decididamente, no una tarea sencilla.

 

El directivo analitico - LUCADesde LUCA, la unidad de Big Data e Inteligencia Artificial de Telefonica, me pidieron un artículo para su blog corporativo sobre los nuevos entornos que precisan, cada vez más, tomar decisiones inteligentes a partir de los datos, y la importancia del análisis de esos datos de cara al desarrollo de un nuevo perfil de directivo. Una tendencia creciente en las compañías modernas que se encuadra en desmitificar el llamado gut feeling, esa supuesta “intuición” de los directivos que, cada día más, prueba que por cada una de esas decisiones acertadas hay, en realidad, un número similar o en ocasiones mayor de decisiones erróneas en contextos similares. 

Mi artículo, titulado “El directivo analítico” (pdf), trata de exponer cómo la llegada del machine learning y la analítica avanzada de datos al mundo directivo nos acerca cada vez más a entornos con un mayor nivel de profesionalización, más científicos y menos dados a sacralizar “la experiencia por la experiencia”, en beneficio de unas herramientas analíticas adecuadas y de unos procedimientos más rigurosos. El management, como ocurre en todas las disciplinas, está destinado a ser cada vez menos “magia” y más ciencia. Para las compañías, entender el funcionamiento de los proyectos de machine learning, sus requerimientos y los pasos que hay que dar para poder alimentar los algoritmos adecuados con datos resulta cada vez más importante – sí, todos los directivos piensan que “tienen muchísimos datos” y que “todos ellos pueden ser utilizados inmediatamente”, pero la realidad es otra muy diferente y mucho más compleja. Sabes qué podemos pedir a un algoritmo, qué posibilidades reales tiene de generar resultados tangibles y qué tiempos de desarrollo cabe esperar en un proyecto de este tipo es cada día más importante para las compañías.

A lo largo de la próxima década, como bien comentan Erik Brynjolfsson y Andrew McAfee en ese gran artículo titulado The business of artificial intelligence, la inteligencia artificial va a cambiar la forma de entender el management hasta el punto de que “aunque la inteligencia artificial no sustituya a los directivos, los directivos que utilicen inteligencia artificial sí sustituyan a los que no lo hacen.” Si como directivo sigues viendo el desarrollo de machine learning e inteligencia artificial desde lejos, como quien ve una película de ciencia-ficción, deberías saber que lo que haces, sea lo que sea, será en algún momento mejorado por otros directivos que sí han aprendido a aprovechar sus posibilidades. Entender el funcionamiento de este tipo de proyectos, su dimensionamiento, sus diferentes fases y lo que se les puede pedir de manera realista se está convirtiendo, tanto a nivel corporativo como personal, en una necesidad cada vez más acuciante.