IMAGE: Freestocks - CC0 licenseVarios artículos inciden en la enorme inquietud que ha generado en los estudios de Hollywood, entre las productoras de cine y televisión y, en general, entre los actores tradicionales de la industria la reciente oleada de acuerdos multimillonarios de Netflix con estrellas como Shonda Rhymes, Ryan Murphy o el matrimonio Obama para la producción de contenidos y su explotación a través de la plataforma. Frente al dinamismo de Netflix, la industria tradicional de los contenidos se encuentra atrapada por un mecanismo de producción anquilosado, que depende enormemente de las secuelas, precuelas y remakes de producciones que anteriormente demostraron algo de éxito, y en la que los ingresos o la popularidad que genera cada producción depende aparentemente de factores casi aleatorios o desconocidos.

La gran realidad del momento es que Netflix, alimentado por una corriente incesante de éxitos mundiales y con una entrada constante de dinero fresco procedente de las cuotas de sus ciento veinticinco millones de suscriptores, puede comprar absolutamente cualquier cosa y atraer a quien buenamente considere interesante atraer. La valoración de la compañía ha crecido más de un 70% desde el pasado enero, y de hecho, ha superado a Disney como compañía de medios más valiosa del mercado. La valoración actual de Netflix, 164,000 millones de dólares, contrasta con los 152,000 de Disney, con algunas diferencias fundamentales: la primera tiene en plantilla algo menos de cinco mil empleados frente a los casi doscientos mil de la segunda, y además, parece haber encontrado el secreto del éxito permanente para la inmensa mayoría de sus producciones.

En octubre de 2015, justo antes de la entrada de Netflix en el mercado español, escribí un position paper con las expectativas que dicha entrada podía generar, y apunté a “un primer año de toma de posiciones moderado, seguido de una expansión intensa y de un crecimiento progresivo a medida que incrementa su oferta gracias a la recuperación de los contratos de sus series más conocidas y al desarrollo de su oferta de producción propia”. A la luz de los datos, mi optimismo inicial se ha visto incluso superado por los resultados, y ello se debe, fundamentalmente, al hecho de introducir en el análisis un factor fundamental: la supremacía de los modelos basados en la analítica de datos.

Para el viejo Hollywood y para las productoras de contenidos tradicionales, el éxito es una variable escurridiza y difícil de entender. El mix entre temática, estilo, argumento, estrellas, directores y demás factores que afectan a la aceptación del producto en el mercado ha sido analizado durante décadas sin resultados demasiado concluyentes, o que simplemente afirman que “a más, mejor”: fuera de la obviedad de que acumular talento y argumentos o temáticas probadas en una producción supone un éxito, poco más se sabe, y los éxitos ocasionales inesperados en producciones de bajo presupuesto o que generan sorpresa se tratan como eso, como excepciones derivadas de algún tipo de capricho de los mercados. A lo largo de muchas décadas de historia, la industria de los contenidos no ha sabido hacer mucho más que eso, y la predicción del éxito es cosa de algunos cotizados expertos trabajando con metodologías parecidas a la alquimia.

Frente a eso, llega Netflix y aplica algo mejor: la analítica. Cada usuario de Netflix deja en la compañía no solo sus sustanciosas cuotas mensuales, sino también algo mucho más valioso: una gran cantidad de información detallada sobre sus gustos, sus hábitos y sus intereses. Con todos esos datos, Netflix es capaz de elaborar un cuidadoso análisis que permite no solo elaborar un algoritmo de recomendación en el que los usuarios confían porque tiende a acertar de manera muy habitual, sino además, toda una maquinaria de predicción de la demanda. Cuando Netflix cierra un acuerdo con Shonda Rhymes, Ryan Murphy o el matrimonio Obama no lo hace siguiendo algún tipo de inspiración, sexto sentido o instinto: lo hace siguiendo un modelo de datos que le dice que esa combinación de talento junto con una serie de argumentos esperables en función de su trayectoria y sobre los que Netflix podría, además, influir, tiene un porcentaje determinado de probabilidad de éxito. De hecho, no solo sabe qué probabilidad de éxito tiene, sino prácticamente quienes de sus clientes van a ver esa producción, y hasta con qué cadencia. Una capacidad de análisis que la industria tradicional, a pesar de los avances que ha supuesto la actividad de compañías como Rentrak (desde 2016, parte de ComScore) que intentan aproximarse a esas metodologías, se limita habitualmente a trabajar con datos agregados de distintas plataformas y con un nivel de información sociodemográfica mucho más básico.

La industria de los contenidos está siendo sometida a un tratamiento que vamos a ver en todas las demás: para ser exitosos, los modelos de negocio en la actualidad deben ser capaces de apalancarse en una generación de datos lo más detallada posible – y además, como bien sabemos en pleno momento de la entrada en vigor de GDPR, percibidos como razonablemente respetuosos con la privacidad – que sean capaces de alimentar modelos de datos sofisticados, algoritmos de machine learning adecuadamente entrenados que permitan entender el negocio: predicciones, expectativas, excepciones y todo tipo de información que permita gestionar de una manera cada vez más cuantitativa, más exacta, más científica. Las series de Netflix no están ahí porque un productor haya tenido una inspiración divina o un momento de lucidez, sino porque un modelo de datos afirma que van a funcionar. Netflix, en ese sentido, es claramente un modelo analítico del siglo XXI frente a los modelos trasnochados y basados en la intuición de las productoras de contenidos del siglo XX. Y en consecuencia, llegan unos resultados sostenidos a lo largo del tiempo que, para quien entienda el poder de la analítica, de los algoritmos y del machine learning… tienen poco de sorprendentes.

 

IMAGE: Freestocks - CC0 licenseVarios artículos inciden en la enorme inquietud que ha generado en los estudios de Hollywood, entre las productoras de cine y televisión y, en general, entre los actores tradicionales de la industria la reciente oleada de acuerdos multimillonarios de Netflix con estrellas como Shonda Rhymes, Ryan Murphy o el matrimonio Obama para la producción de contenidos y su explotación a través de la plataforma. Frente al dinamismo de Netflix, la industria tradicional de los contenidos se encuentra atrapada por un mecanismo de producción anquilosado, que depende enormemente de las secuelas, precuelas y remakes de producciones que anteriormente demostraron algo de éxito, y en la que los ingresos o la popularidad que genera cada producción depende aparentemente de factores casi aleatorios o desconocidos.

La gran realidad del momento es que Netflix, alimentado por una corriente incesante de éxitos mundiales y con una entrada constante de dinero fresco procedente de las cuotas de sus ciento veinticinco millones de suscriptores, puede comprar absolutamente cualquier cosa y atraer a quien buenamente considere interesante atraer. La valoración de la compañía ha crecido más de un 70% desde el pasado enero, y de hecho, ha superado a Disney como compañía de medios más valiosa del mercado. La valoración actual de Netflix, 164,000 millones de dólares, contrasta con los 152,000 de Disney, con algunas diferencias fundamentales: la primera tiene en plantilla algo menos de cinco mil empleados frente a los casi doscientos mil de la segunda, y además, parece haber encontrado el secreto del éxito permanente para la inmensa mayoría de sus producciones.

En octubre de 2015, justo antes de la entrada de Netflix en el mercado español, escribí un position paper con las expectativas que dicha entrada podía generar, y apunté a “un primer año de toma de posiciones moderado, seguido de una expansión intensa y de un crecimiento progresivo a medida que incrementa su oferta gracias a la recuperación de los contratos de sus series más conocidas y al desarrollo de su oferta de producción propia”. A la luz de los datos, mi optimismo inicial se ha visto incluso superado por los resultados, y ello se debe, fundamentalmente, al hecho de introducir en el análisis un factor fundamental: la supremacía de los modelos basados en la analítica de datos.

Para el viejo Hollywood y para las productoras de contenidos tradicionales, el éxito es una variable escurridiza y difícil de entender. El mix entre temática, estilo, argumento, estrellas, directores y demás factores que afectan a la aceptación del producto en el mercado ha sido analizado durante décadas sin resultados demasiado concluyentes, o que simplemente afirman que “a más, mejor”: fuera de la obviedad de que acumular talento y argumentos o temáticas probadas en una producción supone un éxito, poco más se sabe, y los éxitos ocasionales inesperados en producciones de bajo presupuesto o que generan sorpresa se tratan como eso, como excepciones derivadas de algún tipo de capricho de los mercados. A lo largo de muchas décadas de historia, la industria de los contenidos no ha sabido hacer mucho más que eso, y la predicción del éxito es cosa de algunos cotizados expertos trabajando con metodologías parecidas a la alquimia.

Frente a eso, llega Netflix y aplica algo mejor: la analítica. Cada usuario de Netflix deja en la compañía no solo sus sustanciosas cuotas mensuales, sino también algo mucho más valioso: una gran cantidad de información detallada sobre sus gustos, sus hábitos y sus intereses. Con todos esos datos, Netflix es capaz de elaborar un cuidadoso análisis que permite no solo elaborar un algoritmo de recomendación en el que los usuarios confían porque tiende a acertar de manera muy habitual, sino además, toda una maquinaria de predicción de la demanda. Cuando Netflix cierra un acuerdo con Shonda Rhymes, Ryan Murphy o el matrimonio Obama no lo hace siguiendo algún tipo de inspiración, sexto sentido o instinto: lo hace siguiendo un modelo de datos que le dice que esa combinación de talento junto con una serie de argumentos esperables en función de su trayectoria y sobre los que Netflix podría, además, influir, tiene un porcentaje determinado de probabilidad de éxito. De hecho, no solo sabe qué probabilidad de éxito tiene, sino prácticamente quienes de sus clientes van a ver esa producción, y hasta con qué cadencia. Una capacidad de análisis que la industria tradicional, a pesar de los avances que ha supuesto la actividad de compañías como Rentrak (desde 2016, parte de ComScore) que intentan aproximarse a esas metodologías, se limita habitualmente a trabajar con datos agregados de distintas plataformas y con un nivel de información sociodemográfica mucho más básico.

La industria de los contenidos está siendo sometida a un tratamiento que vamos a ver en todas las demás: para ser exitosos, los modelos de negocio en la actualidad deben ser capaces de apalancarse en una generación de datos lo más detallada posible – y además, como bien sabemos en pleno momento de la entrada en vigor de GDPR, percibidos como razonablemente respetuosos con la privacidad – que sean capaces de alimentar modelos de datos sofisticados, algoritmos de machine learning adecuadamente entrenados que permitan entender el negocio: predicciones, expectativas, excepciones y todo tipo de información que permita gestionar de una manera cada vez más cuantitativa, más exacta, más científica. Las series de Netflix no están ahí porque un productor haya tenido una inspiración divina o un momento de lucidez, sino porque un modelo de datos afirma que van a funcionar. Netflix, en ese sentido, es claramente un modelo analítico del siglo XXI frente a los modelos trasnochados y basados en la intuición de las productoras de contenidos del siglo XX. Y en consecuencia, llegan unos resultados sostenidos a lo largo del tiempo que, para quien entienda el poder de la analítica, de los algoritmos y del machine learning… tienen poco de sorprendentes.

 

IMAGE: Freestocks - CC0 licenseVarios artículos inciden en la enorme inquietud que ha generado en los estudios de Hollywood, entre las productoras de cine y televisión y, en general, entre los actores tradicionales de la industria la reciente oleada de acuerdos multimillonarios de Netflix con estrellas como Shonda Rhymes, Ryan Murphy o el matrimonio Obama para la producción de contenidos y su explotación a través de la plataforma. Frente al dinamismo de Netflix, la industria tradicional de los contenidos se encuentra atrapada por un mecanismo de producción anquilosado, que depende enormemente de las secuelas, precuelas y remakes de producciones que anteriormente demostraron algo de éxito, y en la que los ingresos o la popularidad que genera cada producción depende aparentemente de factores casi aleatorios o desconocidos.

La gran realidad del momento es que Netflix, alimentado por una corriente incesante de éxitos mundiales y con una entrada constante de dinero fresco procedente de las cuotas de sus ciento veinticinco millones de suscriptores, puede comprar absolutamente cualquier cosa y atraer a quien buenamente considere interesante atraer. La valoración de la compañía ha crecido más de un 70% desde el pasado enero, y de hecho, ha superado a Disney como compañía de medios más valiosa del mercado. La valoración actual de Netflix, 164,000 millones de dólares, contrasta con los 152,000 de Disney, con algunas diferencias fundamentales: la primera tiene en plantilla algo menos de cinco mil empleados frente a los casi doscientos mil de la segunda, y además, parece haber encontrado el secreto del éxito permanente para la inmensa mayoría de sus producciones.

En octubre de 2015, justo antes de la entrada de Netflix en el mercado español, escribí un position paper con las expectativas que dicha entrada podía generar, y apunté a “un primer año de toma de posiciones moderado, seguido de una expansión intensa y de un crecimiento progresivo a medida que incrementa su oferta gracias a la recuperación de los contratos de sus series más conocidas y al desarrollo de su oferta de producción propia”. A la luz de los datos, mi optimismo inicial se ha visto incluso superado por los resultados, y ello se debe, fundamentalmente, al hecho de introducir en el análisis un factor fundamental: la supremacía de los modelos basados en la analítica de datos.

Para el viejo Hollywood y para las productoras de contenidos tradicionales, el éxito es una variable escurridiza y difícil de entender. El mix entre temática, estilo, argumento, estrellas, directores y demás factores que afectan a la aceptación del producto en el mercado ha sido analizado durante décadas sin resultados demasiado concluyentes, o que simplemente afirman que “a más, mejor”: fuera de la obviedad de que acumular talento y argumentos o temáticas probadas en una producción supone un éxito, poco más se sabe, y los éxitos ocasionales inesperados en producciones de bajo presupuesto o que generan sorpresa se tratan como eso, como excepciones derivadas de algún tipo de capricho de los mercados. A lo largo de muchas décadas de historia, la industria de los contenidos no ha sabido hacer mucho más que eso, y la predicción del éxito es cosa de algunos cotizados expertos trabajando con metodologías parecidas a la alquimia.

Frente a eso, llega Netflix y aplica algo mejor: la analítica. Cada usuario de Netflix deja en la compañía no solo sus sustanciosas cuotas mensuales, sino también algo mucho más valioso: una gran cantidad de información detallada sobre sus gustos, sus hábitos y sus intereses. Con todos esos datos, Netflix es capaz de elaborar un cuidadoso análisis que permite no solo elaborar un algoritmo de recomendación en el que los usuarios confían porque tiende a acertar de manera muy habitual, sino además, toda una maquinaria de predicción de la demanda. Cuando Netflix cierra un acuerdo con Shonda Rhymes, Ryan Murphy o el matrimonio Obama no lo hace siguiendo algún tipo de inspiración, sexto sentido o instinto: lo hace siguiendo un modelo de datos que le dice que esa combinación de talento junto con una serie de argumentos esperables en función de su trayectoria y sobre los que Netflix podría, además, influir, tiene un porcentaje determinado de probabilidad de éxito. De hecho, no solo sabe qué probabilidad de éxito tiene, sino prácticamente quienes de sus clientes van a ver esa producción, y hasta con qué cadencia. Una capacidad de análisis que la industria tradicional, a pesar de los avances que ha supuesto la actividad de compañías como Rentrak (desde 2016, parte de ComScore) que intentan aproximarse a esas metodologías, se limita habitualmente a trabajar con datos agregados de distintas plataformas y con un nivel de información sociodemográfica mucho más básico.

La industria de los contenidos está siendo sometida a un tratamiento que vamos a ver en todas las demás: para ser exitosos, los modelos de negocio en la actualidad deben ser capaces de apalancarse en una generación de datos lo más detallada posible – y además, como bien sabemos en pleno momento de la entrada en vigor de GDPR, percibidos como razonablemente respetuosos con la privacidad – que sean capaces de alimentar modelos de datos sofisticados, algoritmos de machine learning adecuadamente entrenados que permitan entender el negocio: predicciones, expectativas, excepciones y todo tipo de información que permita gestionar de una manera cada vez más cuantitativa, más exacta, más científica. Las series de Netflix no están ahí porque un productor haya tenido una inspiración divina o un momento de lucidez, sino porque un modelo de datos afirma que van a funcionar. Netflix, en ese sentido, es claramente un modelo analítico del siglo XXI frente a los modelos trasnochados y basados en la intuición de las productoras de contenidos del siglo XX. Y en consecuencia, llegan unos resultados sostenidos a lo largo del tiempo que, para quien entienda el poder de la analítica, de los algoritmos y del machine learning… tienen poco de sorprendentes.

 

IMAGE: Freestocks - CC0 licenseVarios artículos inciden en la enorme inquietud que ha generado en los estudios de Hollywood, entre las productoras de cine y televisión y, en general, entre los actores tradicionales de la industria la reciente oleada de acuerdos multimillonarios de Netflix con estrellas como Shonda Rhymes, Ryan Murphy o el matrimonio Obama para la producción de contenidos y su explotación a través de la plataforma. Frente al dinamismo de Netflix, la industria tradicional de los contenidos se encuentra atrapada por un mecanismo de producción anquilosado, que depende enormemente de las secuelas, precuelas y remakes de producciones que anteriormente demostraron algo de éxito, y en la que los ingresos o la popularidad que genera cada producción depende aparentemente de factores casi aleatorios o desconocidos.

La gran realidad del momento es que Netflix, alimentado por una corriente incesante de éxitos mundiales y con una entrada constante de dinero fresco procedente de las cuotas de sus ciento veinticinco millones de suscriptores, puede comprar absolutamente cualquier cosa y atraer a quien buenamente considere interesante atraer. La valoración de la compañía ha crecido más de un 70% desde el pasado enero, y de hecho, ha superado a Disney como compañía de medios más valiosa del mercado. La valoración actual de Netflix, 164,000 millones de dólares, contrasta con los 152,000 de Disney, con algunas diferencias fundamentales: la primera tiene en plantilla algo menos de cinco mil empleados frente a los casi doscientos mil de la segunda, y además, parece haber encontrado el secreto del éxito permanente para la inmensa mayoría de sus producciones.

En octubre de 2015, justo antes de la entrada de Netflix en el mercado español, escribí un position paper con las expectativas que dicha entrada podía generar, y apunté a “un primer año de toma de posiciones moderado, seguido de una expansión intensa y de un crecimiento progresivo a medida que incrementa su oferta gracias a la recuperación de los contratos de sus series más conocidas y al desarrollo de su oferta de producción propia”. A la luz de los datos, mi optimismo inicial se ha visto incluso superado por los resultados, y ello se debe, fundamentalmente, al hecho de introducir en el análisis un factor fundamental: la supremacía de los modelos basados en la analítica de datos.

Para el viejo Hollywood y para las productoras de contenidos tradicionales, el éxito es una variable escurridiza y difícil de entender. El mix entre temática, estilo, argumento, estrellas, directores y demás factores que afectan a la aceptación del producto en el mercado ha sido analizado durante décadas sin resultados demasiado concluyentes, o que simplemente afirman que “a más, mejor”: fuera de la obviedad de que acumular talento y argumentos o temáticas probadas en una producción supone un éxito, poco más se sabe, y los éxitos ocasionales inesperados en producciones de bajo presupuesto o que generan sorpresa se tratan como eso, como excepciones derivadas de algún tipo de capricho de los mercados. A lo largo de muchas décadas de historia, la industria de los contenidos no ha sabido hacer mucho más que eso, y la predicción del éxito es cosa de algunos cotizados expertos trabajando con metodologías parecidas a la alquimia.

Frente a eso, llega Netflix y aplica algo mejor: la analítica. Cada usuario de Netflix deja en la compañía no solo sus sustanciosas cuotas mensuales, sino también algo mucho más valioso: una gran cantidad de información detallada sobre sus gustos, sus hábitos y sus intereses. Con todos esos datos, Netflix es capaz de elaborar un cuidadoso análisis que permite no solo elaborar un algoritmo de recomendación en el que los usuarios confían porque tiende a acertar de manera muy habitual, sino además, toda una maquinaria de predicción de la demanda. Cuando Netflix cierra un acuerdo con Shonda Rhymes, Ryan Murphy o el matrimonio Obama no lo hace siguiendo algún tipo de inspiración, sexto sentido o instinto: lo hace siguiendo un modelo de datos que le dice que esa combinación de talento junto con una serie de argumentos esperables en función de su trayectoria y sobre los que Netflix podría, además, influir, tiene un porcentaje determinado de probabilidad de éxito. De hecho, no solo sabe qué probabilidad de éxito tiene, sino prácticamente quienes de sus clientes van a ver esa producción, y hasta con qué cadencia. Una capacidad de análisis que la industria tradicional, a pesar de los avances que ha supuesto la actividad de compañías como Rentrak (desde 2016, parte de ComScore) que intentan aproximarse a esas metodologías, se limita habitualmente a trabajar con datos agregados de distintas plataformas y con un nivel de información sociodemográfica mucho más básico.

La industria de los contenidos está siendo sometida a un tratamiento que vamos a ver en todas las demás: para ser exitosos, los modelos de negocio en la actualidad deben ser capaces de apalancarse en una generación de datos lo más detallada posible – y además, como bien sabemos en pleno momento de la entrada en vigor de GDPR, percibidos como razonablemente respetuosos con la privacidad – que sean capaces de alimentar modelos de datos sofisticados, algoritmos de machine learning adecuadamente entrenados que permitan entender el negocio: predicciones, expectativas, excepciones y todo tipo de información que permita gestionar de una manera cada vez más cuantitativa, más exacta, más científica. Las series de Netflix no están ahí porque un productor haya tenido una inspiración divina o un momento de lucidez, sino porque un modelo de datos afirma que van a funcionar. Netflix, en ese sentido, es claramente un modelo analítico del siglo XXI frente a los modelos trasnochados y basados en la intuición de las productoras de contenidos del siglo XX. Y en consecuencia, llegan unos resultados sostenidos a lo largo del tiempo que, para quien entienda el poder de la analítica, de los algoritmos y del machine learning… tienen poco de sorprendentes.

 

IMAGE: EcoRobotixUna interesante nota en MIT Technology Review, Weed-killing robots are threatening giant chemical companies’ business models, muestra la preocupación de las grandes empresas químicas por el previsible descenso en el uso masivo de herbicidas en cultivos, debido sobre todo a la aparición de robots relativamente sencillos capaces de recorrer las zonas de cultivo, localizar malas hierbas mediante algoritmos de visión computerizada, y administrar esos herbicidas de manera localizada, exclusivamente sobre la planta que se pretende eliminar, en lugar de hacerlo de manera extensiva e indiscriminada, con el consiguiente ahorro de costes y alivio en las consecuencias ecológicas de ese uso masivo de productos químicos.

El uso de estos robots me recuerda poderosamente a un proyecto a una escala infinitamente menor que vi hace algún tiempo y que me encantó, llamado FarmBot: un montaje relativamente sencillo y gestionado mediante un Raspberry Pi, el ordenador de 30 euros, que convierte un huerto pequeño en un sistema de coordenadas en el que se mueve un cabezal con elementos intercambiables que administra la cantidad de agua adecuada para cada planta, y que además, destruye las malas hierbas simplemente golpeándolas y enterrándolas, sin siquiera recurrir al uso de herbicidas. Una preciosidad de proyecto para huertos pequeños, que permite entender las posibilidades de la robotización en entornos que tradicionalmente consideramos relativamente alejados del progreso tecnológico, aunque la realidad indique que, a lo largo del tiempo, se ha producido una auténtica revolución en el uso de tecnología, en la productividad y en el rendimiento de muchas instalaciones agrícolas.

Mecanismos alimentados por energía solar, recorriendo los campos, y llevando a cabo un trabajo relativamente mecánico como la localización de plagas y malas hierbas, que proceden además a tratar de manera inmediata: el equivalente a tener una persona recorriendo y supervisando permanentemente una extensión de terreno, pero llevado a cabo de una manera mucho más eficiente tanto en rendimiento, como en el uso de recursos, como previsiblemente en calidad y reducción de errores.

Las consecuencias son evidentes: compañías de maquinaria agrícola como John Deere adquiriendo empresas líderes en la aplicación de machine learning a este entorno para dotarse de capacidades que les permitan ofrecer esas capacidades en el futuro, al tiempo que incorporan, no sin cierta polémica en torno a cuestiones como la propiedad del software, cada vez más tecnología para automatizar total o parcialmente el uso de su maquinaria. Un entorno interesantísimo, con fuertes consecuencias en la productividad, y que generalmente tendemos a considerar tradicional, aunque como vemos, cada vez lo es menos.